# A Survey of Infinity Toposes

### James Leslie

#### December 2019

#### Abstract

This paper provides a brief overview of certain ideas and definitions in  $\infty$ -topos theory. In particular, we look at the definitions of both Grothendieck and elementary  $\infty$ -toposes and look at some properties they have.

# Contents

| 1        | Introduction                                                      | 1                       |
|----------|-------------------------------------------------------------------|-------------------------|
| 2        | ∞-toposes   2.1 Accessibility   2.2 Localization   2.3 Left exact | <b>2</b><br>3<br>4<br>4 |
| 3        | Object classifiers                                                | 4                       |
| 4        | Elementary $\infty$ -toposes                                      | 8                       |
| <b>5</b> | Summary                                                           | 9                       |

# 1 Introduction

The category of sets is the archetypal topos and arguably the archetypal category. It provides a framework that most of classical mathematics can be viewed in and has a sufficiently strong internal logic to for most mathematical purposes. This logic, however, is extensional in the sense that "x = y" is either true or false and contains no additional structure. Upgrading our logic to a dependent type theory can endow the identity type withe structure of a higher groupoid. Ordinary 1-category theory isn't sufficient to capture this notion, so instead we turn to higher

category theory. Here, the category of sets is replaced with a different category - the infinity category of spaces, which becomes the archetypal  $\infty$ -topos. It is conjectured that dependent type theories, such as homotopy type theory, are the internal languages of such categories, which motivates their study from a logical perspective.

There are many different ways to describe what an  $\infty$ -topos is. If we take the view that a 1-topos is a 'place where you can do mathematics', then an  $\infty$ -topos can be described as a 'place where you can do homotopy theory'. These slogans can be made slightly more precise by saying that an  $\infty$ -topos is to the  $\infty$ -category of spaces what a 1-topos is to the category of sets. We will look at a common definition of the  $\infty$ -category of spaces and define presheaves and sheaves. We then will look at object classifiers and finish by discussing some properties of elementary  $\infty$ -toposes.

Throughout this paper, an  $\infty$ -category will be an  $(\infty, 1)$ -category, with the same abuse of notation for toposes.

### 2 $\infty$ -toposes

To get started with  $\infty$ -toposes, we need to define the  $\infty$ -category of spaces.

**Definition 2.1.** The  $\infty$ -category *Spaces* is defined to be  $N_{\Delta}(\mathcal{K}an)$  and is called the  $\infty$ -category of spaces. The simplicial category  $\mathcal{K}an$  is the full subcategory of **sSet** spanned by Kan complexes.

For this definition to make sense, we require Spaces to be a  $\infty$ -category, which can be shown using the following lemmas.

Lemma 2.2. The simplicial category Kan is locally Kan.

Proof. Letting X, Y be objects in  $\mathcal{K}$ an, we have a simplicial set  $\mathcal{K}$ an $(X, Y) = Y^X$ , which by Proposition 2.3 is a simplicial set. It can also be shown that this is a Kan complex. Then, by a theorem of Cordier and Porter (lecture - 12/11/19),  $N_{\Delta}(\mathcal{K}$ an) is a  $\infty$ -category.

**Proposition 2.3.** [Lur09, Proposition 1.2.7.3.1] Let X be a simplicial set and Y a  $\infty$ -category. Then the simplicial set of  $Y^X$  is a  $\infty$ -category.

*Proof.* We see that by using the cartesian closed structure of **sSet**, the left lifting problem has a solution if and only if the right lifting problem has a solution:



The map  $X \times \Lambda_k^n \to X \times \Delta^n$  is formed from an inner anodyne map  $\Lambda_k^n \to \Delta^n$ and a monic  $1_X : 1_X$ . By [Lur09, Corollary 2.2.5.4], the map  $X \times \Lambda_k^n \to X \times \Delta^n$ is an inner anodyne map. As Y is a  $\infty$ -category, the right diagram has a lift, so  $Y^X$  is a  $\infty$ -category.

The higher category Spaces plays the role that the category of sets does in ordinary category theory. We use it to define higher presheaves.

**Definition 2.4.** Let  $\mathcal{C}$  be a small  $\infty$ -category. We define  $\widehat{\mathcal{C}}$  to be the  $\infty$ -category  $Spaces^{\mathcal{C}^{op}}$ , also known as the  $\infty$ -category of  $\infty$ -presheaves on  $\mathcal{C}$ .

When the context is clear, we will just refer to  $\infty$ -presheaves just as presheaves. Recalling from 1-category theory, a Grothendieck topos is a category equivalent to the category of sheaves on a site: Sh( $\mathbb{A}, \tau$ ). This category comes with an inclusion map that has a left exact, left adjoint. It turns out that this gives an equivalent definition of Grothendieck toposes [Rez10, Proposition 3.5], which is the one we shall generalise for higher toposes.

**Definition 2.5.** [Lur09, Definition 6.1.0.4] Let X be an  $\infty$ -category. We say X is an  $\infty$ -topos if there exists a small  $\infty$  category  $\mathcal{C}$  and an accessible left exact localization functor  $\widehat{\mathcal{C}} \to X$ .

We shall briefly look at the definition of each adjective in this definition.

#### 2.1 Accessibility

Accessibility requires a lot of prior work and definitions to define, so we will instead discuss some ideas and consequences that it brings. The idea behind accessibility is a way to handle certain categories which are too big or not essentially small. We will present a definition for completeness, but we will say no more about the condition.

**Definition 2.6.** [nLa19a, Definition 2.1.2] An  $\infty$ -category X is  $\kappa$ -accessible if the following hold:

- 1. X is locally small,
- 2. X has  $\kappa$ -filtered colimits,
- 3. The full subcategory  $X \hookrightarrow X$  of  $\kappa$  compact objects (3.5) is an essentially small  $\infty$ -category.
- 4.  $X \hookrightarrow X$  generates X under  $\kappa$ -filtered colimits.

#### 2.2 Localization

Recall what it means for a functor of infinity categories to be fully faithful:

**Definition 2.7.** [Lur09, Definition 1.2.10.1] A map  $f : X \to Y$  of infinity categories is **fully faithful** when the induced map  $X^r(x,y) \to Y^r(f(x), f(y))$  is a weak homotopy equivalence for all  $x, y \in X_0$ .

**Definition 2.8.** [Lur09, Definition 5.2.7.2] A functor  $f : X \to Y$  between infinity categories is a **localization** if f has a fully faithful right adjoint.

Unsurprisingly, this is the same definition that we have for 1-categories, with the exception that 'fully faithful' be interpreted correctly. This can be thought of as a higher characterisation of reflective subcategories.

#### 2.3 Left exact

We see that the definition of left exact is lifted from the 1-categorical setting without much tweaking.

**Definition 2.9.** [Lur09, Remark 5.3.2.10] Let X, Y be  $\infty$ -categories and suppose X has all finite limits. A functor  $F : X \to Y$  is **left exact** if it preserves finite limits.

As we see, Definition 2.5 can simplified to the following: X is an  $\infty$ -topos if X is accessible and we have an adjunction

$$\widehat{\mathcal{C}} \xrightarrow[i]{a} X$$

for some small  $\infty$ -category  $\mathcal{C}$ , with *i* an embedding, and *a* commuting with finite limits.

## **3** Object classifiers

In 1-category theory, toposes can be shown/defined to have a subobject classifier, which classifies the set of monics in the topos. This means that there is an object  $\Omega$  which represents the presheaf Sub. We will generalise this notion so we can talk about object classifiers, which  $\infty$ -toposes can be shown to have.

We note that in 1-category theory, from a category  $\mathscr{C}$  we can define a category  $\mathscr{C}_{Mono}$  whose objects are monomorphisms and whose maps are pullback squares with horizontal maps being monic. It is clear that  $\mathscr{C}$  has a subobject classifier if and only if  $\mathscr{C}_{Mono}$  has a terminal object. This is the property that we will abstract to define object classifiers.

**Definition 3.1.** [Lur09, Notation 6.1.3.4] Let X be an  $\infty$ -category and S a subclass of morphisms which is stable under pullback. We define the following  $(\infty)$ categories:

- 1.  $O_X^S$  is the full subcategory of  $X^{(\Delta^1)}$  spanned by S.
- 2.  $O_X^{(S)}$  is the subcategory of  $O_X$  whose objects are elements of S and whose morphisms  $f \to g$  are pullback diagrams where f is the pullback of g along some map in X.

**Definition 3.2.** [Lur09, Definition 6.1.6.1] Let X be an infinity category with pullbacks and S a collection of morphisms of X which is stable under pullback. A morphism f classifies S if it is a terminal object of  $O_X^{(S)}$ .

If we interpret this 1-categorically, then we see that indeed, a subobject classifieris precisely a morphism that classifies monics (subobjects) in the sense of this definition.

**Definition 3.3.** [nLa19d] A map  $f : x \to y$  in an infinity category X is a **monomorphism** if the induced functor  $X/f \to X/y$  is a fully faithful functor.

**Lemma 3.4.** [Lur09, Example 6.1.6.2] The  $\infty$ -category Spaces has a subobject classifier given by the monic  $\Delta^0 \hookrightarrow \{0, 1\}$ , where the codomain is the discrete two object Kan complex.

A natural question that arises is whether or not  $\infty$ -toposes have subobject classifiers? It turns out that whilst this is true, it is not as relevant when working in the ( $\infty$ )-categorical setting. Instead, one may want to be able to classify all maps in a higher topos. Following the discussion following [Lur09, Proposition 6.1.6.3], we see that this is often unreasonable. In a 1-category  $\mathscr{C}$ , due to the fact that hom sets are sets, if  $Y \to X$  is not a monic, we lose information about nontrivial automorphisms of Y. In the  $\infty$ -categorical case however, as the hom spaces are now Kan complexes, this information can be retained. Another issue is that of running into size issues: by having an object classify every object in an infinity category X, [Lur09, Proposition 6.1.6.3] guarentees that every slice category  $X_{/x}$ will be essentially small. To get around this, we introduce object classifiers.

**Definition 3.5.** [Lur09, Definition 6.1.6.4] Let X be a presentable  $\infty$ -category and  $\kappa$  a cardinal. A map  $f : x \to y$  in X is **relatively**  $\kappa$ -compact if for every pullback diagram

$$\begin{array}{ccc} x' & \longrightarrow & x \\ f' \downarrow & & & \downarrow f \\ y' & \longrightarrow & y \end{array}$$

such that Y' is  $\kappa$ -compact, X' is also  $\kappa$ -compact.

The following classification of  $\infty$  toposes was shown by Rezk.

**Theorem 3.6.** [Lur09, Theorem 6.1.6.8] Let X be an  $\infty$ -category. Then, X is an  $\infty$ -topos if and only if the following conditions hold:

- 1. X is presentable,
- 2. Colimits in X are universal,
- 3. For all sufficiently large regular cardinals  $\kappa$ , there exists a classifying object for the class of all relatively  $\kappa$ -compact morphisms in X.

**Definition 3.7.** [Lur09, Definition 6.1.1.2] Let X be a presentable infinity category. We say that **colimits in** X **are universal** if the associated pullback functor  $f: X^{/y} \to X^{/x}$  preserves small colimits, for any map that  $f: x \to y$  in X.

Returning to our discussion on subobjects, we recall that a way to state the existence of a subobject classifier in a 1-category is demonstrate that the functor Sub is representable. This is the route that Rasekh takes in defining object classifiers in higher categories.

**Definition 3.8.** [Ras18, Definition 1.78] Let X be a higher category with finite limits and let S be a subclass of morphisms, closed under pullbacks. An object  $\mathcal{U}^S$  of X is an object classifier for S if it represents the functor

$$((X_{/-})^S)^{\operatorname{core}} : X^{op} \to Spaces$$

The category  $(X/x)^S$  is full subcategory of X/x spanned by the maps in S. The functor  $(-)^{core}$  takes an  $\infty$ -category and outputs the maximal subgroupoid, which we view as an object in *Spaces*.

This can be seen as the same notion as Lurie's object classifier in the following way: given any object  $x \in X$ , representability gives an equivalence

$$((X_{/x})^S)^{\operatorname{core}} \simeq X(x, \mathcal{U}^S).$$

This then gives rise to a map  $\mathcal{U}^S_* \to \mathcal{U}^S$  with the property that for any map  $f: x \to y$  in S, there is an essentially unique pullback square:

$$\begin{array}{c} x \longrightarrow y \\ \downarrow & \downarrow \\ \mathcal{U}_{*}^{S} \longrightarrow \mathcal{U}^{S} \end{array}$$

This condition is precisely the condition that Lurie gives: the category  $O_X^{(S)}$  has a terminal object.

Object classifiers are often called universes and can be thought of as an internal  $\infty$ -topos [nLa19e, Remark 1.1]. From the homotopy type theoretic perspective, object classifiers correspond to types of types.

Following [Ras18, Example 1.81], we can look at the object classifiers in Spaces.

**Definition 3.9.** Let  $\kappa$  be a sufficiently large cardinal. We define the following:

- 1.  $Spaces^{\kappa}$  is the higher category of spaces which are  $\kappa$  small.
- 2.  $\mathcal{U}^{\kappa}$  is the category  $(Spaces^{\kappa})^{\text{core}}$ .
- 3.  $\mathcal{U}_*^{\kappa}$  is the category  $(\mathcal{S}paces_*^{\kappa})^{\text{core}}$ , where  $\mathcal{S}paces_*^{\kappa}$  are  $\kappa$  small pointed spaces.

**Lemma 3.10.** [Ras18, Example 1.81] The category  $Spaces^{\kappa}$  has an object classifier.

*Proof.* The forgetful map  $Spaces^{\kappa} \to Spaces^{\kappa}$  which forgets the pointedness structure induces a map  $p: \mathcal{U}^{\kappa}_* \to \mathcal{U}^{\kappa}$ . We can then show that the functor

$$((Spaces_{/-})^{\kappa})^{\operatorname{core}}$$

is representable. To do this, we first observe the following chain of equivalences:

$$\begin{aligned} ((\mathcal{S}paces_{/*})^{\kappa})^{\mathrm{core}} &\simeq ((\mathcal{S}paces)^{\kappa})^{\mathrm{core}}, \\ &= \mathcal{U}^{\kappa}, \\ &\simeq \mathcal{S}paces(*, \mathcal{U}^{\kappa}). \end{aligned}$$

To complete the proof, we use the property that every space is a colimit of the point and both sides commute with colimits [Ras18, Example 1.81, (2)].  $\Box$ 

Spaces can be recovered by taking pullbacks along the map  $\mathcal{U}_*^{\kappa} \to \mathcal{U}^{\kappa}$ . We can define a  $\kappa$  small space X to be a map  $X : \Delta^0 \to \mathcal{U}^{\kappa}$ . The following pullback diagram then arises:



We see that a fibre over X is then the space of all pointed spaces (X, x), with x a point of X. This space can be identified with X, meaning that the pullback is the space X.

### 4 Elementary $\infty$ -toposes

So far we have only looked at higher toposes of sheaves, which we shall call Grothendieck higher toposes. As is the case with 1-topos theory, there is a weaker notion of a topos known as an elementary topos. The definition of an elementary 1-topos is motivated from a logical perspective in that it gives you enough structure to do most finitary (intuitionistic) logic. To differentiate between the two different notions, the previous  $\infty$ -topos will be referred to as **Grothendieck**  $\infty$ -toposes. In the higher case, whilst the definition of a Grothendieck higher topos is set in stone, there has been some debate around what an elementary higher topos should be, however it now seems like there is an accepted definition.

**Definition 4.1.** [nLa19c] An elementary  $\infty$ -topos is an  $\infty$ -category  $\mathscr{E}$  such that the following conditions hold:

- 1.  $\mathscr{E}$  has finite limits and colimits
- 2.  $\mathscr{E}$  is locally cartesian closed
- 3. There exists a subobject classifier
- 4. For any morphism  $f: y \to x$  in  $\mathscr{E}$ , there is a class of morphisms S containing f which is closed under finite limits, colimits, composition and dependent products, such that there is an object classifier for  $\mathcal{U}^S$  for S.

The definition of cartesian closed is taken straight from 1-category theory - finite products and a terminal objects with the functor  $x \times (-)$  having a right adjoint for every object x in  $\mathscr{E}$ . Locally cartesian closed here means that every slice category  $\mathscr{E}/x$  is also cartesian closed. This immediately means that every elementary  $\infty$ -topos is cartesian closed via the identification of  $\mathscr{E}_{/\Delta^0}$  with  $\mathscr{E}$ . It is discussed in an n-Category Café blog post by Shulman [Shu17] that every Grothendieck  $\infty$ topos is an elementary  $\infty$ -topos, which means that we can prove some results in an easier fashion by showing that they hold for elementary toposes.

**Lemma 4.2.** [*nLa19c*, Theorem 3.1] Any morphism  $x \to 0$  in an elementary  $\infty$ -topos is an equivalence.

*Proof.* This proof is more or less the same as the 1-categorical proof. Given a morphism  $f: x \to 0$ , we see that the projection  $x \times 0 \to x$  has a section  $\langle 1_x, f \rangle : x \to x \times 0$ . Noting that the functor  $x \times (-)$  is a left adjoint, it must preserve colimits [nLa19b], hence  $x \times 0$  is equivalent to 0, meaning that f must be an equivalence.

One of the key results in 1-topos theory is the Fundamental Theorem of Topos theory, which states that the slice of an elementary topos is again an elementary topos. This theorem holds in the  $\infty$ -topos setting.

**Theorem 4.3.** [Ras18, Theorem 3.10] Let  $\mathscr{E}$  be an elementary  $\infty$  topos and x an object of  $\mathscr{E}$ . Then  $\mathscr{E}/x$  is an elementary  $\infty$ -topos.

*Proof.* The proof found in [Ras18, Theorem 3.10] uses a different definition of elementary  $\infty$ -topos to the one we do. However, we will give out outline of the similar properties.

The category  $\mathscr{E}/x$  has finite limits and colimits, inherited from  $\mathscr{E}$ . We will also give an overview of the existence of a subobject classifier. If  $\mathscr{E}$  has a subobject classifier given by  $\Omega$ , we claim that the projection map  $\pi_2 : \Omega \times x \to x$  is a subobject classifier in  $\mathscr{E}/x$ . Firstly, we need to determine what monics in  $\mathscr{E}/x$  are: it turns out that a morphism  $h: f \to g$  is a monic in  $\mathscr{E}/x$  precisely when h is a monic in  $\mathscr{E}$ . This means if  $f: y \to x$  is an object in  $\mathscr{E}/x$ , the restriction map  $\operatorname{Sub}(f) \to \operatorname{Sub}(y)$ is going to be an equivalence of spaces (where  $\operatorname{Sub}(-)$  is suitable defined). This means it suffices to show that there is an equivalence  $\mathscr{E}_{/x}(f, \pi_2) \simeq \operatorname{Sub}(y)$ . Rasekh then does this by exhibiting a certain adjunction which gives rise to the following chain of equivalences

$$\operatorname{Sub}(f) \xrightarrow{\simeq} \operatorname{Sub}(y) \xrightarrow{\simeq} \mathscr{E}(y,\Omega) \xrightarrow{\simeq} \mathscr{E}_{/x}(f,\pi_2)$$

This shows that  $\operatorname{Sub}(f) \simeq \mathscr{E}_{/x}(f, \pi_2)$ , meaning that  $\pi_2$  is the subobject classifier, as required.

### 5 Summary

We have defined Grothendieck  $\infty$ -toposes and looked briefly at the components in the definition. We then studied object classifiers and discussed their role and use in toposes, showing that a sub object classifier can be thought of as a special case of and object classifier. Finally, we introduced elementary  $\infty$ -toposes and looked at some results that can be proven about them, including an overview of part of the proof of the fundemental theorem of  $\infty$ -toposes. In this paper we have only scratched the surface of the rich structure of that  $\infty$ -toposes can have. Further places of research include understanding the relationship between dependent type theories and  $\infty$ -toposes, in particular looking at the internal languages of such categories.

# References

- [Lur09] Jacob Lurie. *Higher Topos Theory (AM-170)*. Princeton University Press, 2009.
- [nLa19a] nLab authors. accessible (infinity,1)-category. http://ncatlab.org/ nlab/show/accessible%20%28infinity%2C1%29-category, December 2019. Revision 22.
- [nLa19b] nLab authors. adjoint (infinity,1)-functor. http://ncatlab.org/nlab/ show/adjoint%20%28infinity%2C1%29-functor, December 2019. Revision 36.
- [nLa19c] nLab authors. elementary (infinity,1)-topos. http://ncatlab. org/nlab/show/elementary%20%28infinity%2C1%29-topos, December 2019. Revision 32.
- [nLa19d] nLab authors. monomorphism in an (infinity,1)-category. http://ncatlab.org/nlab/show/monomorphism%20in%20an%20% 28infinity%2C1%29-category, December 2019. Revision 12.
- [nLa19e] nLab authors. (sub)object classifier in an (infinity,1)-topos. http://ncatlab.org/nlab/show/%28sub%29object%20classifier% 20in%20an%20%28infinity%2C1%29-topos, December 2019. Revision 46.
- [Ras18] Nima Rasekh. A theory of elementary higher toposes, 2018.
- [Rez10] Charles Rezk. Toposes and homotopy toposes (version 0.15). 01 2010.
- [Shu17] Mike Shulman. Elementary (,1)-topoi. https://golem.ph.utexas. edu/category/2017/04/elementary\_1topoi.html, April 2017.