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Definition 1. Given a locally small category o/ and a functor X : &7/°P — Set,
the category of elements of X, denoted E(X) or fd X, is defined as follows:

o Objects are pairs (A € A,z € X(A4)),

e Morphisms f : (4,2) — (A’,2’) are maps f : A — A’ € & such that
Xf)@) =z

Given a presheaf X, there is a projection funtor P : E(X) — & that sends
(A,2) — A and f — f. As a result of the property that morphisms satisfy, we
can write them as f: (A’, (X f)(z)) — (A,x). Tt is worth noticing that if there
is an A-morphism f : A” — A, then there is a unique element =’ € X (A’) such
that there is an E(X )-morphism f : (A’,2) — (A4, z), namely 2’ = (X f)(z).The
category of elements can also be treated as a comma category.

Lemma 2. [2, Exercise 6.2.22] There is an isomorphism E(X) = (1 = X).

Proof. We look at the comma category for the following diagram:

A°P
|x
1 *1> Set
Here, 1 is the terminal category and 1 : 1 — Set is the functor that selects

the terminal set. This category has as objects, pairs (A € A,z : 1 — X(A)) and
morphisms f : (4,z) — (A4’,2') are commuting triangles:

12 X(A)
N
X(A)

That this triangle commutes is the same as stating x = (X f)(z’), which is
the condition above. O

Proposition 3. [2, Exercise 6.2.23] Let X be a presheaf on a locally small
category. X is representable if and only if E(X) has a terminal object.



Proof. The category E(X) has a terminal object if and only if there is an object
(A, x) such that for any (A’,2’), there is exactly one morphism f : (4’,2') —
(A, z). This is equivalent to there being an A € & and = € X(A) such that
for all A’ € o/, x € X(A'), there is a unique morphism f : A — A such
that (X f)(x) = 2’. This condition is equivalent to X being representable,
by [2, Corollary 4.3.2]. O

The category of elements is very useful when looking at colimits in functor
categories.

Proposition 4. [2, Theorem 6.2.17] Let A be small and X : A°? — Set a
presheaf. Then X is the colimit of the following diagram:

E(X) —2 o 2 [P, Set]

We should first note that this does make sense; as & is small, so is E(X),
hence a colimit does indeed exist.

Proof. We know that presheaf categories have all (small) limits and colimits, so
a colimit of H, o P exists. Let Y € [A°?,Set| be a presheaf and let (cv(a,z) :
(He o P)(A,x2) = Y)(a,0)er(x) be a cocone on H, o P with vertex Y. We can
simply this to have (a(a,z) : (Ha = Y)(4,0)er(x). This is a family of natural
transformations, so for all f: (A",2') — (A, x) in E(X), the folowing diagram
commutes

Hu

HfJ, X(jk(xmm (1)

Ha oot ¥

By the Yoneda lemma, every natural transformation a4, : Ha — Y cor-
responds to a unique element (c(44))a(la) € Y (A), which we shall denote
Y(Ax)- As diagram (1) commutes, it commutes for all A € A, so in particular it
commutes for A’. This gives us the following:

HA/(A’) lA/ —_ (O‘(A',(Xf)(x)))A/(lA’) (: y(A’7(Xf)(x)))
, (aqar,(xpy())ar
Hy(A)
Ha(4) Y(A') [ (a(ae))ar(f)
(a,z))ar

(2)
This gives us yar,(xf)z)) = (Q(a,2))a(f). As (4, is a natural transfor-
mation, the following square commutes:



Ha(A) Y g 1, f

(a(a,2) Al J{(Q(A,m))A’ l

Y(4) =7 Y(4) (va,z))ar(f)

(a(am)ala) — (Y f)((aam))a(la))
(3)
This gives us (Y f)(Y(a.2)) = ((a,2))a(f). Combining this with the above
we see that a cocone on Y is a collection of elements (y(AJ))(A’l.)E]E(X) such that
for any f: (4", (Xf)(2)) = (4,2) in E(X), (Y )(Y(a,2)) = Year,(x1)(@))-
An equivalent way to write y(4 ) is @a(z) : X(A) — Y (A) and treat it as
a function.The properties above then say for any f : (A, (X f)(x)) — (A, x)
in E(X), (Yf)(@a(z)) = aa(Xf)(z)), that is to say the following diagram
commutes for all f:

x(4) X x(a

aAl @y (4)

Y(4) 5 V()

This shows that @ : X — Y is a natural transformation. As all of the above
is equivalent, we see that a cocone on Y is the same as a map from X into Y,
hence X is the colimit of H, o P. We can write this as equivalence formally as

[E(X), [A?, Set]](H, o P,AY) = [A°P Set](X,Y).
This is an application of the dual of [2, Equation 6.2]. O

0.1 An equivalence

Given a set S, there is an equivalence of categories Set/S ~ Set”, where the
latter has as objects S indexed tuples of sets. Given (A, f: A — S) € Set/S,
we form the tuple (f~1(s))ses and given a tuple (Ay)secs, we form the disjoint
union ], 4 As along with the function g : [[,.g As — S that sends every
element in each A; to s. This equivalence can be abstracted to categories by
the following theorem.

Theorem 5. [1, Proposition 1.1.7] Let A be a small category and X : A°? —
Set a presheaf on A. Then there is an equivalence of categories

[A°P Set|/X ~ [E(X)°P, Set]. (5)



Proof. There are lots of naturality conditions that need to be checked; however,
we shall ignore most of them as they are quite easy to check. We first define
the following functor:

“:[AP, Set]/ X — [E(X)P, Set]
(Fa: F— X)— ((Fa): E(X)°? — Set),

—_—

(A: (Fya) = (G.B)) = (A (F.a) = (G, §)).

The functor @ is defined as follows:

—

(F,a) : E(X)°? — Set

(4,2) = oy’ (2),

F(AL (X N@) = (Ax) = (Fa)(f) : ayt (@) = agl (X)),

Where @(f)(y) = (Ff)(y). The natural transformation A has compo-
nents A4,z : oyt — Byt (x) with Aa,z) () = Aa(y). We now define a map in
the other direction:

T [B(X), Set] — [A, Set]/X

P:E(X)% — Set 3 X(A) ,

z€X(A) AcA

AP=Qe [ Aa: [ A= [ @:(4)

2EX(A) 2EX(A) Aea

The functor P, : A°? — Set is defined as P,(A) = P(A,z). This can then
be made into a functor [, . x(—) Pe : A°? — Set. The natural transformation
P has components defined by the universal property of the coproduct. If y €
P,(A) then P4(y) = z. The natural transformation A has components with the
following action on y € P(A,x) - Aa(y) = Aa,0)(¥)-

We need to show that the composites of these functors are naturally iso-
morphic to the identity functors. Given (F,«a) € [A°P, Set]/X, @ is a pair
(Ieex(-) a(il) (x),&). For any A € A, there is a map @E{’a) such that the
following commutes:

Iexoa @' () —225 X(4) —— aaly)

o] / i/

F(A)



This makes sense as for every z € X(A), a,'(z) C F(A), so <pE4F’°‘) (y) is an

inclusion map. We notice that each a;*(z) is disjoint, so <pf4F’a) is injective. It
must also be surjective as for any y € F(A), y € ;' (aa(y)), hence cpff’a) is
an isomorphism for all A. We need first show that it is natural in A € A, so let

f: A" — A be an A-morphism. We see that the following commutes:

—_— —_—
—_—~ = p—

@(A) it g @(A/) [eexa) ay'(z) ety aex(an ay (2)
oo e ee] e
F(A) —— F(A) F(A) ——— F(4)
y————— (F)y)
y———— (Ff)(y)

Now we have a morphism P> : (F,a) — (F,a), for every (F,a) €
[A°? Set]. We need to show that it is natural. Let A : (F,a) — (G,[) be
a [A°? Set]/X-morphism. It suffices to show that the following diagram com-
mutes for every A € A, which we see it does.

~ —~— ~

(F,a)(4) =45 (G, B)(A) Moexon @5t (@) = Texo 87 (@)
o0 o5 o | |
F(A) —— G(4) F(A) ———— F(4)

y ——— )

This shows that ¢ is natural, hence = = L{por set]/x» naturally. The other
isomorphism is shown similarly.
O
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