Category of elements

James Leslie

June 30, 2018

Definition 1. Given a locally small category \mathscr{A} and a functor $X: \mathscr{A}^{o p} \rightarrow$ Set, the category of elements of X, denoted $\mathbb{E}(X)$ or $\int^{\mathscr{A}} X$, is defined as follows:

- Objects are pairs $(A \in \mathbb{A}, x \in X(A))$,
- Morphisms $f:(A, x) \rightarrow\left(A^{\prime}, x^{\prime}\right)$ are maps $f: A \rightarrow A^{\prime} \in \mathscr{A}$ such that $(X f)\left(x^{\prime}\right)=x$.

Given a presheaf X, there is a projection funtor $P: \mathbb{E}(X) \rightarrow \mathscr{A}$ that sends $(A, x) \mapsto A$ and $f \mapsto f$. As a result of the property that morphisms satisfy, we can write them as $f:\left(A^{\prime},(X f)(x)\right) \rightarrow(A, x)$. It is worth noticing that if there is an \mathbb{A}-morphism $f: A^{\prime} \rightarrow A$, then there is a unique element $x^{\prime} \in X\left(A^{\prime}\right)$ such that there is an $\mathbb{E}(X)$-morphism $f:\left(A^{\prime}, x^{\prime}\right) \rightarrow(A, x)$, namely $x^{\prime}=(X f)(x)$. The category of elements can also be treated as a comma category.

Lemma 2. [2, Exercise 6.2.22] There is an isomorphism $\mathbb{E}(X) \cong(1 \Rightarrow X)$.
Proof. We look at the comma category for the following diagram:

Here, $\mathbb{1}$ is the terminal category and $1: \mathbb{1} \rightarrow$ Set is the functor that selects the terminal set. This category has as objects, pairs $(A \in \mathbb{A}, x: 1 \rightarrow X(A))$ and morphisms $f:(A, x) \rightarrow\left(A^{\prime}, x^{\prime}\right)$ are commuting triangles:

That this triangle commutes is the same as stating $x=(X f)\left(x^{\prime}\right)$, which is the condition above.

Proposition 3. [2, Exercise 6.2.23] Let X be a presheaf on a locally small category. X is representable if and only if $\mathbb{E}(X)$ has a terminal object.

Proof. The category $\mathbb{E}(X)$ has a terminal object if and only if there is an object (A, x) such that for any $\left(A^{\prime}, x^{\prime}\right)$, there is exactly one morphism $f:\left(A^{\prime}, x^{\prime}\right) \rightarrow$ (A, x). This is equivalent to there being an $A \in \mathscr{A}$ and $x \in X(A)$ such that for all $A^{\prime} \in \mathscr{A}, x \in X\left(A^{\prime}\right)$, there is a unique morphism $f: A^{\prime} \rightarrow A$ such that $(X f)(x)=x^{\prime}$. This condition is equivalent to X being representable, by [2, Corollary 4.3.2].

The category of elements is very useful when looking at colimits in functor categories.

Proposition 4. [2, Theorem 6.2.17] Let \mathbb{A} be small and $X: \mathbb{A}^{o p} \rightarrow$ Set a presheaf. Then X is the colimit of the following diagram:

$$
\mathbb{E}(X) \xrightarrow{P} \mathscr{A} \xrightarrow{H_{\bullet}}\left[\mathscr{A}^{o p}, \text { Set }\right]
$$

That is, $X \cong \lim _{\rightarrow \mathbb{E}(X)}(H \bullet \circ P)$.
We should first note that this does make sense; as \mathscr{A} is small, so is $\mathbb{E}(X)$, hence a colimit does indeed exist.

Proof. We know that presheaf categories have all (small) limits and colimits, so a colimit of $H_{\bullet} \circ P$ exists. Let $Y \in\left[\mathbb{A}^{o p}\right.$, Set $]$ be a presheaf and let $\left(\alpha_{(A, x)}\right.$: $\left.\left(H_{\bullet} \circ P\right)(A, x) \rightarrow Y\right)_{(A, x) \in \mathbb{E}(X)}$ be a cocone on $H_{\bullet} \circ P$ with vertex Y. We can simply this to have $\left(\alpha_{(A, x)}:\left(H_{A} \rightarrow Y\right)_{(A, x) \in \mathbb{E}(X)}\right.$. This is a family of natural transformations, so for all $f:\left(A^{\prime}, x^{\prime}\right) \rightarrow(A, x)$ in $\mathbb{E}(X)$, the folowing diagram commutes

By the Yoneda lemma, every natural transformation $\alpha_{(A, x)}: H_{A} \rightarrow Y$ corresponds to a unique element $\left(\alpha_{(A, x)}\right)_{A}\left(1_{A}\right) \in Y(A)$, which we shall denote $y_{(A, x)}$. As diagram (1) commutes, it commutes for all $A \in \mathbb{A}$, so in particular it commutes for A^{\prime}. This gives us the following:

This gives us $y_{\left(A^{\prime},(X f)(x)\right)}=\left(\alpha_{(A, x)}\right)_{A^{\prime}}(f)$. As $\alpha_{(A, x)}$ is a natural transformation, the following square commutes:

This gives us $(Y f)\left(y_{(A, x)}\right)=\left(\alpha_{(A, x)}\right)_{A^{\prime}}(f)$. Combining this with the above we see that a cocone on Y is a collection of elements $\left(y_{(A, x)}\right)_{(A, x) \in \mathbb{E}(X)}$ such that for any $f:\left(A^{\prime},(X f)(x)\right) \rightarrow(A, x)$ in $\mathbb{E}(X),(Y f)\left(y_{(A, x)}\right)=y_{\left(A^{\prime},(X f)(x)\right)}$.

An equivalent way to write $y_{(A, x)}$ is $\bar{\alpha}_{A}(x): X(A) \rightarrow Y(A)$ and treat it as a function. The properties above then say for any $f:\left(A^{\prime},(X f)(x)\right) \rightarrow(A, x)$ in $\mathbb{E}(X),(Y f)\left(\bar{\alpha}_{A}(x)\right)=\bar{\alpha}_{A^{\prime}}((X f)(x))$, that is to say the following diagram commutes for all f :

$$
\left.\begin{array}{l}
X(A) \xrightarrow{X f} X\left(A^{\prime}\right) \\
\bar{\alpha}_{A} \downarrow \tag{4}\\
\downarrow \\
Y(A) \xrightarrow[Y f]{ } \\
\\
\\
\\
\downarrow^{\downarrow} \bar{\alpha}_{A^{\prime}} \\
\\
\hline
\end{array} A^{\prime}\right)
$$

This shows that $\bar{\alpha}: X \rightarrow Y$ is a natural transformation. As all of the above is equivalent, we see that a cocone on Y is the same as a map from X into Y, hence X is the colimit of $H_{\bullet} \circ P$. We can write this as equivalence formally as

$$
\left[\mathbb{E}(X),\left[\mathbb{A}^{o p}, \mathbf{S e t}\right]\right]\left(H_{\bullet} \circ P, \Delta Y\right) \cong\left[\mathbb{A}^{o p}, \boldsymbol{\operatorname { S e t }}\right](X, Y)
$$

This is an application of the dual of [2, Equation 6.2].

0.1 An equivalence

Given a set S, there is an equivalence of categories $\boldsymbol{\operatorname { S e t }} / S \simeq \boldsymbol{\operatorname { S e t }}^{S}$, where the latter has as objects S indexed tuples of sets. Given $(A, f: A \rightarrow S) \in \operatorname{Set} / S$, we form the tuple $\left(f^{-1}(s)\right)_{s \in S}$ and given a tuple $\left(A_{s}\right)_{s \in S}$, we form the disjoint union $\coprod_{s \in S} A_{s}$ along with the function $g: \coprod_{s \in S} A_{s} \rightarrow S$ that sends every element in each A_{s} to s. This equivalence can be abstracted to categories by the following theorem.

Theorem 5. [1, Proposition 1.1.7] Let \mathbb{A} be a small category and $X: \mathbb{A}^{o p} \rightarrow$ Set a presheaf on \mathbb{A}. Then there is an equivalence of categories

$$
\begin{equation*}
\left[\mathbb{A}^{o p}, \text { Set }\right] / X \simeq\left[\mathbb{E}(X)^{o p}, \text { Set }\right] . \tag{5}
\end{equation*}
$$

Proof. There are lots of naturality conditions that need to be checked; however, we shall ignore most of them as they are quite easy to check. We first define the following functor:

$$
\begin{aligned}
\hat{\cdot}:\left[\mathbb{A}^{o p}, \text { Set }\right] / X & \rightarrow\left[\mathbb{E}(X)^{o p}, \text { Set }\right] \\
(F, \alpha: F \rightarrow X) & \mapsto\left(\widehat{(F, \alpha)}: \mathbb{E}(X)^{o p} \rightarrow \text { Set }\right), \\
(\lambda:(F, \alpha) \rightarrow(G, \beta)) & \mapsto(\hat{\lambda}: \widehat{(F, \alpha)} \rightarrow \widehat{(G, \beta)}) .
\end{aligned}
$$

The functor $\widehat{(F, \alpha)}$ is defined as follows:

$$
\begin{aligned}
\widehat{(F, \alpha)}: \mathbb{E}(X)^{o p} & \rightarrow \text { Set } \\
(A, x) & \mapsto \alpha_{A}^{-1}(x), \\
f:\left(A^{\prime},(X f)(x)\right) \rightarrow(A, x) & \mapsto \widehat{(F, \alpha)}(f): \alpha_{A}^{-1}(x) \rightarrow \alpha_{A^{\prime}}^{-1}((X f)(x))
\end{aligned}
$$

Where $\widehat{(F, \alpha)}(f)(y)=(F f)(y)$. The natural transformation $\hat{\lambda}$ has components $\hat{\lambda}_{(A, x)}: \alpha_{A}^{-1} \rightarrow \beta_{A}^{-1}(x)$ with $\hat{\lambda}_{(A, x)}(y)=\lambda_{A}(y)$. We now define a map in the other direction:

$$
\begin{aligned}
\tilde{}:\left[\mathbb{E}(X)^{o p}, \text { Set }\right] & \rightarrow\left[\mathbb{A}^{o p}, \text { Set }\right] / X \\
P: \mathbb{E}(X)^{o p} \rightarrow \mathbf{S e t} & \mapsto\left(\tilde{P}_{A}: \coprod_{x \in X(A)} P_{x}(A) \rightarrow X(A)\right)_{A \in \mathbb{A}}, \\
\lambda: P \rightarrow Q & \mapsto\left(\tilde{\lambda}_{A}: \coprod_{x \in X(A)} P_{x}(A) \rightarrow \coprod_{x \in X(A)} Q_{x}(A)\right)_{A \in \mathbb{A}} .
\end{aligned}
$$

The functor $P_{x}: \mathbb{A}^{o p} \rightarrow$ Set is defined as $P_{x}(A)=P(A, x)$. This can then be made into a functor $\coprod_{x \in X(-)} P_{x}: \mathbb{A}^{o p} \rightarrow$ Set. The natural transformation \tilde{P} has components defined by the universal property of the coproduct. If $y \in$ $P_{x}(A)$ then $\tilde{P}_{A}(y)=x$. The natural transformation $\tilde{\lambda}$ has components with the following action on $y \in P(A, x)-\tilde{\lambda}_{A}(y)=\lambda_{(A, x)}(y)$.

We need to show that the composites of these functors are naturally isomorphic to the identity functors. Given $(F, \alpha) \in\left[\mathbb{A}^{o p}, \mathbf{S e t}\right] / X, \widetilde{(F, \alpha)}$ is a pair $\left(\coprod_{x \in X(-)} \alpha_{(-)}^{-1}(x), \tilde{\hat{\alpha}}\right)$. For any $A \in \mathbb{A}$, there is a map $\varphi_{A}^{(F, \alpha)}$ such that the following commutes:

This makes sense as for every $x \in X(A), \alpha_{A}^{-1}(x) \subseteq F(A)$, so $\varphi_{A}^{(F, \alpha)}(y)$ is an inclusion map. We notice that each $\alpha_{A}^{-1}(x)$ is disjoint, so $\varphi_{A}^{(F, \alpha)}$ is injective. It must also be surjective as for any $y \in F(A), y \in \alpha_{A}^{-1}\left(\alpha_{A}(y)\right)$, hence $\varphi_{A}^{(F, \alpha)}$ is an isomorphism for all A. We need first show that it is natural in $A \in \mathbb{A}$, so let $f: A^{\prime} \rightarrow A$ be an \mathbb{A}-morphism. We see that the following commutes:

$$
\begin{aligned}
& \widetilde{(F, \alpha)}(A) \widetilde{\widetilde{(F, \alpha)}(f)} \widetilde{\widetilde{(F, \alpha)}}\left(A^{\prime}\right) \\
& \begin{array}{c}
\varphi_{A}^{(F, \alpha)} \downarrow \\
F(A) \xrightarrow[F(f)]{\downarrow} \\
\\
F\left(A^{\prime}\right)
\end{array} \\
& \coprod_{x \in X(A)} \alpha_{A}^{-1}(x) \xrightarrow{\widetilde{(F, \alpha)}(f)} \coprod_{x \in X\left(A^{\prime}\right)} \alpha_{A^{\prime}}^{-1}(x) \\
& \begin{array}{c}
\varphi_{A}^{(F, \alpha)} \downarrow \\
F(A) \xrightarrow[F(f)]{\longrightarrow} F\left(A^{\prime}\right)
\end{array}
\end{aligned}
$$

Now we have a morphism $\varphi^{(F, \alpha)}: \widetilde{\widetilde{(F, \alpha)}} \rightarrow(F, \alpha)$, for every $(F, \alpha) \in$ $\left[\mathbb{A}^{o p}\right.$, Set $]$. We need to show that it is natural. Let $\lambda:(F, \alpha) \rightarrow(G, \beta)$ be a $\left[\mathbb{A}^{o p}\right.$, Set $] / X$-morphism. It suffices to show that the following diagram commutes for every $A \in \mathbb{A}$, which we see it does.

$$
\begin{aligned}
& \coprod_{x \in X(A)} \alpha_{A}^{-1}(x) \xrightarrow{\widetilde{\widetilde{\lambda}}_{A}} \coprod_{x \in X(A)} \beta_{A}^{-1}(x) \\
& \stackrel{\varphi_{A}^{(F, \alpha)} \downarrow}{F(A) \xrightarrow[\lambda_{A}]{\longrightarrow} F F(A)}
\end{aligned}
$$

This shows that φ is natural, hence $\widetilde{\widehat{ }} \cong \mathbb{1}_{\left[\mathbb{A}^{o p}, \text { Set }\right] / X}$, naturally. The other isomorphism is shown similarly.

References

[1] T. Leinster, Higher operads, higher categories, 2003.
[2] , Basic category theory. Cambridge Studies in Advanced Mathematics, Vol. 143, Cambridge University Press, 2014, 2016. Accessed: 25/06/18.

