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Definition 1. Given a locally small category A and a functor X : A op → Set,

the category of elements of X, denoted E(X) or
∫ A

X, is defined as follows:

• Objects are pairs (A ∈ A, x ∈ X(A)),

• Morphisms f : (A, x) → (A′, x′) are maps f : A → A′ ∈ A such that
(Xf)(x′) = x.

Given a presheaf X, there is a projection funtor P : E(X) → A that sends
(A, x) 7→ A and f 7→ f . As a result of the property that morphisms satisfy, we
can write them as f : (A′, (Xf)(x))→ (A, x). It is worth noticing that if there
is an A-morphism f : A′ → A, then there is a unique element x′ ∈ X(A′) such
that there is an E(X)-morphism f : (A′, x′)→ (A, x), namely x′ = (Xf)(x).The
category of elements can also be treated as a comma category.

Lemma 2. [2, Exercise 6.2.22] There is an isomorphism E(X) ∼= (1⇒ X).

Proof. We look at the comma category for the following diagram:

Aop

1 Set

X

1

Here, 1 is the terminal category and 1 : 1→ Set is the functor that selects
the terminal set. This category has as objects, pairs (A ∈ A, x : 1→ X(A)) and
morphisms f : (A, x)→ (A′, x′) are commuting triangles:

1 X(A′)

X(A)

x

x′

Xf

That this triangle commutes is the same as stating x = (Xf)(x′), which is
the condition above.

Proposition 3. [2, Exercise 6.2.23] Let X be a presheaf on a locally small
category. X is representable if and only if E(X) has a terminal object.
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Proof. The category E(X) has a terminal object if and only if there is an object
(A, x) such that for any (A′, x′), there is exactly one morphism f : (A′, x′) →
(A, x). This is equivalent to there being an A ∈ A and x ∈ X(A) such that
for all A′ ∈ A , x ∈ X(A′), there is a unique morphism f : A′ → A such
that (Xf)(x) = x′. This condition is equivalent to X being representable,
by [2, Corollary 4.3.2].

The category of elements is very useful when looking at colimits in functor
categories.

Proposition 4. [2, Theorem 6.2.17] Let A be small and X : Aop → Set a
presheaf. Then X is the colimit of the following diagram:

E(X) A [A op,Set]P H•

That is, X ∼= lim→E(X)(H• ◦ P ).

We should first note that this does make sense; as A is small, so is E(X),
hence a colimit does indeed exist.

Proof. We know that presheaf categories have all (small) limits and colimits, so
a colimit of H• ◦ P exists. Let Y ∈ [Aop,Set] be a presheaf and let (α(A,x) :
(H• ◦ P )(A, x) → Y )(A,x)∈E(X) be a cocone on H• ◦ P with vertex Y . We can
simply this to have (α(A,x) : (HA → Y )(A,x)∈E(X). This is a family of natural
transformations, so for all f : (A′, x′) → (A, x) in E(X), the folowing diagram
commutes

HA′

HA Y

α(A′,(Xf)(x))
Hf

α(A,x)

(1)

By the Yoneda lemma, every natural transformation α(A,x) : HA → Y cor-
responds to a unique element (α(A,x))A(1A) ∈ Y (A), which we shall denote
y(A,x). As diagram (1) commutes, it commutes for all A ∈ A, so in particular it
commutes for A′. This gives us the following:

HA′(A
′) 1A′ (α(A′,(Xf)(x)))A′(1A′) (= y(A′,(Xf)(x)))

HA(A′) Y (A′) f (α(A,x))A′(f)

(α(A′,(Xf)(x)))A′
Hf (A

′)

(α(A,x))A′

(2)
This gives us y(A′,(Xf)(x)) = (α(A,x))A′(f). As α(A,x) is a natural transfor-

mation, the following square commutes:
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HA(A) HA(A′) 1A f

Y (A) Y (A′) (α(A,x))A′(f)

(α(A,x))A(1A) (Y f)((α(A,x))A(1A))

(α(A,x))A

HA(f)

(α(A,x))A′

Y f

(3)
This gives us (Y f)(y(A,x)) = (α(A,x))A′(f). Combining this with the above

we see that a cocone on Y is a collection of elements (y(A,x))(A,x)∈E(X) such that
for any f : (A′, (Xf)(x))→ (A, x) in E(X), (Y f)(y(A,x)) = y(A′,(Xf)(x)).

An equivalent way to write y(A,x) is αA(x) : X(A) → Y (A) and treat it as
a function.The properties above then say for any f : (A′, (Xf)(x)) → (A, x)
in E(X), (Y f)(αA(x)) = αA′((Xf)(x)), that is to say the following diagram
commutes for all f :

X(A) X(A′)

Y (A) Y (A′)

Xf

αA αA′

Y f

(4)

This shows that α : X → Y is a natural transformation. As all of the above
is equivalent, we see that a cocone on Y is the same as a map from X into Y ,
hence X is the colimit of H• ◦ P . We can write this as equivalence formally as

[E(X), [Aop,Set]](H• ◦ P,∆Y ) ∼= [Aop,Set](X,Y ).

This is an application of the dual of [2, Equation 6.2].

0.1 An equivalence

Given a set S, there is an equivalence of categories Set/S ' SetS , where the
latter has as objects S indexed tuples of sets. Given (A, f : A → S) ∈ Set/S,
we form the tuple (f−1(s))s∈S and given a tuple (As)s∈S , we form the disjoint
union

∐
s∈S As along with the function g :

∐
s∈S As → S that sends every

element in each As to s. This equivalence can be abstracted to categories by
the following theorem.

Theorem 5. [1, Proposition 1.1.7] Let A be a small category and X : Aop →
Set a presheaf on A. Then there is an equivalence of categories

[Aop,Set]/X ' [E(X)op,Set]. (5)
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Proof. There are lots of naturality conditions that need to be checked; however,
we shall ignore most of them as they are quite easy to check. We first define
the following functor:

·̂ : [Aop,Set]/X → [E(X)op,Set]

(F, α : F → X) 7→ ((̂F, α) : E(X)op → Set),

(λ : (F, α)→ (G, β)) 7→ (λ̂ : (̂F, α)→ (̂G, β)).

The functor (̂F, α) is defined as follows:

(̂F, α) : E(X)op → Set

(A, x) 7→ α−1A (x),

f : (A′, (Xf)(x))→ (A, x) 7→ (̂F, α)(f) : α−1A (x)→ α−1A′ ((Xf)(x)).

Where (̂F, α)(f)(y) = (Ff)(y). The natural transformation λ̂ has compo-

nents λ̂(A,x) : α−1A → β−1A (x) with λ̂(A,x)(y) = λA(y). We now define a map in
the other direction:

·̃ : [E(X)op,Set]→ [Aop,Set]/X

P : E(X)op → Set 7→

P̃A :
∐

x∈X(A)

Px(A)→ X(A)


A∈A

,

λ : P → Q 7→

λ̃A :
∐

x∈X(A)

Px(A)→
∐

x∈X(A)

Qx(A)


A∈A

.

The functor Px : Aop → Set is defined as Px(A) = P (A, x). This can then
be made into a functor

∐
x∈X(−) Px : Aop → Set. The natural transformation

P̃ has components defined by the universal property of the coproduct. If y ∈
Px(A) then P̃A(y) = x. The natural transformation λ̃ has components with the
following action on y ∈ P (A, x) - λ̃A(y) = λ(A,x)(y).

We need to show that the composites of these functors are naturally iso-

morphic to the identity functors. Given (F, α) ∈ [Aop,Set]/X,
˜̂
(F, α) is a pair

(
∐
x∈X(−) α

−1
(−)(x), ˜̂α). For any A ∈ A, there is a map ϕ

(F,α)
A such that the

following commutes:

∐
x∈X(A) α

−1
A (x) X(A) y αA(y)

F (A) y

˜̂αA

ϕ
(F,α)
A αA
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This makes sense as for every x ∈ X(A), α−1A (x) ⊆ F (A), so ϕ
(F,α)
A (y) is an

inclusion map. We notice that each α−1A (x) is disjoint, so ϕ
(F,α)
A is injective. It

must also be surjective as for any y ∈ F (A), y ∈ α−1A (αA(y)), hence ϕ
(F,α)
A is

an isomorphism for all A. We need first show that it is natural in A ∈ A, so let
f : A′ → A be an A-morphism. We see that the following commutes:

˜̂
(F, α)(A)

˜̂
(F, α)(A′)

∐
x∈X(A) α

−1
A (x)

∐
x∈X(A′) α

−1
A′ (x)

F (A) F (A′) F (A) F (A′)

y (Ff)(y)

y (Ff)(y)

˜̂
(F,α)(f)

ϕ
(F,α)
A

ϕ
(F,α)

A′ ϕ
(F,α)
A

˜̂
(F,α)(f)

ϕ
(F,α)

A′

F (f) F (f)

Now we have a morphism ϕ(F,α) :
˜̂
(F, α) → (F, α), for every (F, α) ∈

[Aop,Set]. We need to show that it is natural. Let λ : (F, α) → (G, β) be
a [Aop,Set]/X-morphism. It suffices to show that the following diagram com-
mutes for every A ∈ A, which we see it does.

˜̂
(F, α)(A)

˜̂
(G, β)(A)

∐
x∈X(A) α

−1
A (x)

∐
x∈X(A) β

−1
A (x)

F (A) G(A) F (A) F (A)

y ∈ α−1A (x) λA(y)

y λA(y)

˜̂
λA

ϕ
(F,α)
A ϕ

(G,β)
A ϕ

(F,α)
A

˜̂
λA

ϕ
(G,β)
A

λA λA

This shows that ϕ is natural, hence ˜̂· ∼= 1[Aop,Set]/X , naturally. The other
isomorphism is shown similarly.
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