Category of elements

James Leslie

June 30, 2018

Definition 1. Given a locally small category \mathscr{A} and a functor $X : \mathscr{A}^{op} \to \mathbf{Set}$, the **category of elements** of X, denoted $\mathbb{E}(X)$ or $\int^{\mathscr{A}} X$, is defined as follows:

- Objects are pairs $(A \in \mathbb{A}, x \in X(A))$,
- Morphisms $f: (A, x) \to (A', x')$ are maps $f: A \to A' \in \mathscr{A}$ such that (Xf)(x') = x.

Given a presheaf X, there is a projection funtor $P : \mathbb{E}(X) \to \mathscr{A}$ that sends $(A, x) \mapsto A$ and $f \mapsto f$. As a result of the property that morphisms satisfy, we can write them as $f : (A', (Xf)(x)) \to (A, x)$. It is worth noticing that if there is an A-morphism $f : A' \to A$, then there is a unique element $x' \in X(A')$ such that there is an $\mathbb{E}(X)$ -morphism $f : (A', x') \to (A, x)$, namely x' = (Xf)(x). The category of elements can also be treated as a comma category.

Lemma 2. [2, Exercise 6.2.22] There is an isomorphism $\mathbb{E}(X) \cong (1 \Rightarrow X)$.

Proof. We look at the comma category for the following diagram:

$$\begin{array}{c} \mathbb{A}^{op} \\ \downarrow^X \\ \mathbb{1} \xrightarrow{1} \mathbf{Set} \end{array}$$

Here, 1 is the terminal category and $1 : 1 \to \mathbf{Set}$ is the functor that selects the terminal set. This category has as objects, pairs $(A \in \mathbb{A}, x : 1 \to X(A))$ and morphisms $f : (A, x) \to (A', x')$ are commuting triangles:

$$1 \xrightarrow{x'} X(A')$$

$$x \xrightarrow{\chi} Xf$$

$$X(A)$$

That this triangle commutes is the same as stating x = (Xf)(x'), which is the condition above.

Proposition 3. [2, Exercise 6.2.23] Let X be a presheaf on a locally small category. X is representable if and only if $\mathbb{E}(X)$ has a terminal object.

Proof. The category $\mathbb{E}(X)$ has a terminal object if and only if there is an object (A, x) such that for any (A', x'), there is exactly one morphism $f : (A', x') \to (A, x)$. This is equivalent to there being an $A \in \mathscr{A}$ and $x \in X(A)$ such that for all $A' \in \mathscr{A}$, $x \in X(A')$, there is a unique morphism $f : A' \to A$ such that (Xf)(x) = x'. This condition is equivalent to X being representable, by [2, Corollary 4.3.2].

The category of elements is very useful when looking at colimits in functor categories.

Proposition 4. [2, Theorem 6.2.17] Let \mathbb{A} be small and $X : \mathbb{A}^{op} \to \mathbf{Set}$ a presheaf. Then X is the colimit of the following diagram:

$$\mathbb{E}(X) \xrightarrow{P} \mathscr{A} \xrightarrow{H_{\bullet}} [\mathscr{A}^{op}, \mathbf{Set}]$$

That is, $X \cong \lim_{\to \mathbb{E}(X)} (H_{\bullet} \circ P).$

We should first note that this does make sense; as \mathscr{A} is small, so is $\mathbb{E}(X)$, hence a colimit does indeed exist.

Proof. We know that presheaf categories have all (small) limits and colimits, so a colimit of $H_{\bullet} \circ P$ exists. Let $Y \in [\mathbb{A}^{op}, \mathbf{Set}]$ be a presheaf and let $(\alpha_{(A,x)} : (H_{\bullet} \circ P)(A, x) \to Y)_{(A,x) \in \mathbb{E}(X)}$ be a cocone on $H_{\bullet} \circ P$ with vertex Y. We can simply this to have $(\alpha_{(A,x)} : (H_A \to Y)_{(A,x) \in \mathbb{E}(X)}$. This is a family of natural transformations, so for all $f : (A', x') \to (A, x)$ in $\mathbb{E}(X)$, the following diagram commutes

$$\begin{array}{c} H_{A'} \\ H_{f} \downarrow & \swarrow^{\alpha_{(A',(Xf)(x))}} \\ H_{A} & \xrightarrow{\alpha_{(A,x)}} Y \end{array}$$
(1)

By the Yoneda lemma, every natural transformation $\alpha_{(A,x)} : H_A \to Y$ corresponds to a unique element $(\alpha_{(A,x)})_A(1_A) \in Y(A)$, which we shall denote $y_{(A,x)}$. As diagram (1) commutes, it commutes for all $A \in \mathbb{A}$, so in particular it commutes for A'. This gives us the following:

$$\begin{array}{cccc}
H_{A'}(A') & 1_{A'} \longmapsto (\alpha_{(A',(Xf)(x))})_{A'}(1_{A'}) & (=y_{(A',(Xf)(x))}) \\
H_{f}(A') & \downarrow & \downarrow \\
H_{A}(A')_{(\alpha_{(A,x)})_{A'}} Y(A') & f \longmapsto (\alpha_{(A,x)})_{A'}(f) \\
\end{array}$$

$$(2)$$

This gives us $y_{(A',(Xf)(x))} = (\alpha_{(A,x)})_{A'}(f)$. As $\alpha_{(A,x)}$ is a natural transformation, the following square commutes:

This gives us $(Yf)(y_{(A,x)}) = (\alpha_{(A,x)})_{A'}(f)$. Combining this with the above we see that a cocone on Y is a collection of elements $(y_{(A,x)})_{(A,x)\in\mathbb{E}(X)}$ such that for any $f: (A', (Xf)(x)) \to (A, x)$ in $\mathbb{E}(X), (Yf)(y_{(A,x)}) = y_{(A', (Xf)(x))}$.

An equivalent way to write $y_{(A,x)}$ is $\overline{\alpha}_A(x) : X(A) \to Y(A)$ and treat it as a function. The properties above then say for any $f : (A', (Xf)(x)) \to (A, x)$ in $\mathbb{E}(X)$, $(Yf)(\overline{\alpha}_A(x)) = \overline{\alpha}_{A'}((Xf)(x))$, that is to say the following diagram commutes for all f:

$$\begin{array}{ccc} X(A) & \xrightarrow{Xf} & X(A') \\ \hline \overline{\alpha}_A & & & & \downarrow \overline{\alpha}_{A'} \\ Y(A) & \xrightarrow{Yf} & Y(A') \end{array} \tag{4}$$

This shows that $\overline{\alpha}: X \to Y$ is a natural transformation. As all of the above is equivalent, we see that a cocone on Y is the same as a map from X into Y, hence X is the colimit of $H_{\bullet} \circ P$. We can write this as equivalence formally as

$$[\mathbb{E}(X), [\mathbb{A}^{op}, \mathbf{Set}]](H_{\bullet} \circ P, \Delta Y) \cong [\mathbb{A}^{op}, \mathbf{Set}](X, Y).$$

This is an application of the dual of [2, Equation 6.2].

0.1 An equivalence

Given a set S, there is an equivalence of categories $\mathbf{Set}/S \simeq \mathbf{Set}^S$, where the latter has as objects S indexed tuples of sets. Given $(A, f : A \to S) \in \mathbf{Set}/S$, we form the tuple $(f^{-1}(s))_{s \in S}$ and given a tuple $(A_s)_{s \in S}$, we form the disjoint union $\coprod_{s \in S} A_s$ along with the function $g : \coprod_{s \in S} A_s \to S$ that sends every element in each A_s to s. This equivalence can be abstracted to categories by the following theorem.

Theorem 5. [1, Proposition 1.1.7] Let \mathbb{A} be a small category and $X : \mathbb{A}^{op} \to$ **Set** a presheaf on \mathbb{A} . Then there is an equivalence of categories

$$[\mathbb{A}^{op}, \mathbf{Set}]/X \simeq [\mathbb{E}(X)^{op}, \mathbf{Set}].$$
(5)

Proof. There are lots of naturality conditions that need to be checked; however, we shall ignore most of them as they are quite easy to check. We first define the following functor:

$$\begin{split} \hat{\cdot} : [\mathbb{A}^{op}, \mathbf{Set}]/X \to [\mathbb{E}(X)^{op}, \mathbf{Set}] \\ (F, \alpha : F \to X) \mapsto (\widehat{(F, \alpha)} : \mathbb{E}(X)^{op} \to \mathbf{Set}), \\ (\lambda : (F, \alpha) \to (G, \beta)) \mapsto (\hat{\lambda} : \widehat{(F, \alpha)} \to \widehat{(G, \beta)}). \end{split}$$

The functor (F, α) is defined as follows:

$$\begin{split} \widehat{(F,\alpha)} &: \mathbb{E}(X)^{op} \to \mathbf{Set} \\ & (A,x) \mapsto \alpha_A^{-1}(x), \\ f &: (A', (Xf)(x)) \to (A,x) \mapsto \widehat{(F,\alpha)}(f) : \alpha_A^{-1}(x) \to \alpha_{A'}^{-1}((Xf)(x)). \end{split}$$

Where $\widehat{(F,\alpha)}(f)(y) = (Ff)(y)$. The natural transformation $\hat{\lambda}$ has components $\hat{\lambda}_{(A,x)} : \alpha_A^{-1} \to \beta_A^{-1}(x)$ with $\hat{\lambda}_{(A,x)}(y) = \lambda_A(y)$. We now define a map in the other direction:

$$\tilde{\cdot} : [\mathbb{E}(X)^{op}, \mathbf{Set}] \to [\mathbb{A}^{op}, \mathbf{Set}]/X$$
$$P : \mathbb{E}(X)^{op} \to \mathbf{Set} \mapsto \left(\tilde{P}_A : \coprod_{x \in X(A)} P_x(A) \to X(A)\right)_{A \in \mathbb{A}},$$
$$\lambda : P \to Q \mapsto \left(\tilde{\lambda}_A : \coprod_{x \in X(A)} P_x(A) \to \coprod_{x \in X(A)} Q_x(A)\right)_{A \in \mathbb{A}}$$

The functor $P_x : \mathbb{A}^{op} \to \mathbf{Set}$ is defined as $P_x(A) = P(A, x)$. This can then be made into a functor $\coprod_{x \in X(-)} P_x : \mathbb{A}^{op} \to \mathbf{Set}$. The natural transformation \tilde{P} has components defined by the universal property of the coproduct. If $y \in P_x(A)$ then $\tilde{P}_A(y) = x$. The natural transformation $\tilde{\lambda}$ has components with the following action on $y \in P(A, x) - \tilde{\lambda}_A(y) = \lambda_{(A,x)}(y)$.

We need to show that the composites of these functors are naturally isomorphic to the identity functors. Given $(F, \alpha) \in [\mathbb{A}^{op}, \mathbf{Set}]/X$, $\widetilde{(F, \alpha)}$ is a pair $(\coprod_{x \in X(-)} \alpha_{(-)}^{-1}(x), \tilde{\alpha})$. For any $A \in \mathbb{A}$, there is a map $\varphi_A^{(F,\alpha)}$ such that the following commutes:

This makes sense as for every $x \in X(A)$, $\alpha_A^{-1}(x) \subseteq F(A)$, so $\varphi_A^{(F,\alpha)}(y)$ is an inclusion map. We notice that each $\alpha_A^{-1}(x)$ is disjoint, so $\varphi_A^{(F,\alpha)}$ is injective. It must also be surjective as for any $y \in F(A)$, $y \in \alpha_A^{-1}(\alpha_A(y))$, hence $\varphi_A^{(F,\alpha)}$ is an isomorphism for all A. We need first show that it is natural in $A \in \mathbb{A}$, so let $f: A' \to A$ be an \mathbb{A} -morphism. We see that the following commutes:

Now we have a morphism $\varphi^{(F,\alpha)} : (F,\alpha) \to (F,\alpha)$, for every $(F,\alpha) \in [\mathbb{A}^{op}, \mathbf{Set}]$. We need to show that it is natural. Let $\lambda : (F,\alpha) \to (G,\beta)$ be a $[\mathbb{A}^{op}, \mathbf{Set}]/X$ -morphism. It suffices to show that the following diagram commutes for every $A \in \mathbb{A}$, which we see it does.

This shows that φ is natural, hence $\widetilde{\cdot} \cong \mathbb{1}_{[\mathbb{A}^{op}, \mathbf{Set}]/X}$, naturally. The other isomorphism is shown similarly.

References

[1] T. LEINSTER, Higher operads, higher categories, 2003.

 [2] —, Basic category theory. Cambridge Studies in Advanced Mathematics, Vol. 143, Cambridge University Press, 2014, 2016. Accessed: 25/06/18.